Tlen singletowy od 20 lat jest znanym i badanym środkiem do walki z patogenami i chorobami.

Poniżej przykłady prac naukowych i badań poświęconych tej tematyce.

Benchmarks for surface hygiene in hospitals:

Dancer, S.J., Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev, 2014. 27(4): p. 665-90.

Institut, R.K., Anforderungen an die Hygiene bei der Reinigung und Desinfektion von Flächen., 2004.

Survival of pathogens on inanimate surfaces:

Kramer, A., I. Schwebke, and G. Kampf, How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis, 2006. 6: p. 130.

Effectiveness dyphox (laboratory & field study): Eichner, A., et al., Novel photodynamic coatings reduce the bioburden on near-patient surface thereby reducing the risk for onward pathogen transmission - a field study in two hospitals. Journal of Hospital Infection, 2019.

Schreiner M. et al., Photodynamic inactivation of bacteria to decolonize methicillin-resistant Staphylococcus aureus from human skin. The British journal of dermatology 2018 Dec;179(6):1358-67.

Eichner, A., et al., Fast and effective inactivation of Bacillus atrophaeus endospores using light-activated derivatives of vitamin B2. Photochemical & Photobiological Sciences, 2015. 14(2): p. 387-396.

Felgentrager, A., et al., Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus. Physical Chemistry Chemical Physics, 2014.

16(38): p. 20598-20607. Eichner A. et al.,. Dirty hands: photodynamic killing of human pathogens like EHEC, MRSA and Candida within seconds. Photochem Photobiol Sci. 2013 Jan;12(1):135-47

Antimicrobial surfaces (overview – field studies)

Muller MP, MacDougall C, Lim M et al., Antimicrobial surfaces to prevent healthcare-associated infections: a systematic review. J Hosp Infec 2016 Jan;92(1):7-133; REVIEW


(ISI), F.-I.f.S.-u.I., Beurteilung der Gesamtumweltexposition von Silberionen aus Biozid-Produkten., 2008.

BfR, Nanosilber gehört nicht in Lebensmittel, Textilien und Kosmetika., 2010.

Ramachandran R et al., In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study. 3 Biotech. 2018 Oct;8(10):441

Scientific studies on the antiviral effect of singlet oxygen

Wiehe, A., J.M. O'Brien, and M.O. Senge, Trends and targets in antiviral phototherapy. Photochemical & Photobiological Sciences, 2019. 18(11): p. 2565-2612.

Hollmann, A., et al., Singlet oxygen effects on lipid membranes: implications for the mechanism of action of broad- spectrum viral fusion inhibitors. Biochemical Journal, 2014. 459: p. 161-170.

Korneev, D., et al., Ultrastructural Aspects of Photodynamic Inactivation of Highly Pathogenic Avian H5N8 Influenza Virus. Viruses, 2019. 11(10).

Majiya, H., et al., Photodynamic inactivation of non-enveloped RNA viruses. J Photochem Photobiol B, 2018. 189: p. 87- 94.

Teles, A.V., et al., Photodynamic inactivation of Bovine herpesvirus type 1 (BoHV-1) by porphyrins. J Gen Virol, 2018. 99(9): p. 1301-1306.

Cruz-Oliveira, C., et al., Mechanisms of Vesicular Stomatitis Virus Inactivation by Protoporphyrin IX, Zinc-Protoporphyrin IX, and Mesoporphyrin IX. Antimicrob Agents Chemother, 2017. 61(6).

Balmer, B.F., et al., Inhibition of an Aquatic Rhabdovirus Demonstrates Promise of a Broad-Spectrum Antiviral for Use in Aquaculture. Journal of Virology, 2017. 91(4).

Carpenter, B.L., et al., Antiviral, Antifungal and Antibacterial Activities of a BODIPY-Based Photosensitizer. Molecules, 2015. 20(6): p. 10604-10621.

Ke, M.R., et al., Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines. European Journal of Medicinal Chemistry, 2014. 84: p. 278-283


Verhaelen, K., et al., Wipes Coated with a Singlet-Oxygen-Producing Photosensitizer Are Effective against Human Influenza Virus but Not against Norovirus. Applied and Environmental Microbiology, 2014. 80(14): p. 4391-4397.

Vigant, F., et al., The Rigid Amphipathic Fusion Inhibitor dUY11 Acts through Photosensitization of Viruses. Journal of Virology, 2014. 88(3): p. 1849-1853.

Rosado-Lausell, S.L., et al., Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation. Water Research, 2013. 47(14): p. 4869-4879.

Vigant, F., et al., A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion. Plos Pathogens, 2013. 9(4).

Costa, L., et al., Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. J Photochem Photobiol B, 2013. 120: p. 10-6.

Lhotakova, Y., et al., Virucidal nanofiber textiles based on photosensitized production of singlet oxygen. PLoS One, 2012. 7(11): p. e49226.

Rule Wigginton, K., et al., Oxidation of virus proteins during UV(254) and singlet oxygen mediated inactivation. Environ Sci Technol, 2010. 44(14): p. 5437-43.

Hotze, E.M., et al., Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions. Environ Sci Technol, 2009. 43(17): p. 6639-45.

Wen, W.H., et al., Synergistic effect of zanamivir-porphyrin conjugates on inhibition of neuraminidase and inactivation of influenza virus. J Med Chem, 2009. 52(15): p. 4903-10.

Tome, J.P., et al., Synthesis of neutral and cationic tripyridylporphyrin-D-galactose conjugates and the photoinactivation of HSV-1. Bioorg Med Chem, 2007. 15(14): p. 4705-13.

Mohr, H., et al., Virus inactivation of blood products by phenothiazine dyes and light. Photochem Photobiol, 1997. 65(3): p. 441-5.

Hirayama, J., et al., Involvement of reactive oxygen species in hemoglobin oxidation and virus inactivation by 1,9- dimethylmethylene blue phototreatment. Biol Pharm Bull, 2001. 24(4): p. 418-21.

Lin, Y.L., et al., Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology, 2000. 275(2): p. 258-62.

Pellieux, C., et al., Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. Methods Enzymol, 2000. 319: p. 197-207.

Stroop, W.G., et al., PCR assessment of HSV-1 corneal infection in animals treated with rose bengal and lissamine green B. Invest Ophthalmol Vis Sci, 2000. 41(8): p. 2096-102.

Yip, L., et al., Antiviral activity of a derivative of the photosensitive compound Hypericin. Phytomedicine, 1996. 3(2): p. 185-90.

Lenard, J., A. Rabson, and R. Vanderoef, Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci U S A, 1993. 90(1): p. 158-62.

Neris, R.L.S., et al., Co-protoporphyrin IX and Sn-protoporphyrin IX inactivate Zika, Chikungunya and other arboviruses by targeting the viral envelope. Scientific Reports, 2018. 8.

Randazzo, W., R. Aznar, and G. Sanchez, Curcumin-Mediated Photodynamic Inactivation of Norovirus Surrogates. Food Environ Virol, 2016. 8(4): p. 244-250.

Latief, M.A., et al., Inactivation of acyclovir-sensitive and -resistant strains of herpes simplex virus type 1 in vitro by photodynamic antimicrobial chemotherapy. Mol Vis, 2015. 21: p. 532-7.

Banerjee, I., et al., Light-activated nanotube-porphyrin conjugates as effective antiviral agents. Nanotechnology, 2012. 23(10).


Lim, M.E., et al., Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials, 2012. 33(6): p. 1912-1920.

Yin, H.J., et al., Photoinactivation of cell-free human immunodeficiency virus by hematoporphyrin monomethyl ether. Lasers in Medical Science, 2012. 27(5): p. 943-950.

Costa, L., et al., Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Research, 2011. 91(3): p. 278-282.

Eickmann, M., et al., Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion, 2018. 58(9): p. 2202- 2207.